

3.Killing & Degradation

- The **key step** is the formation of **phagolysosome** & exposing the ingested particles to **microbicidal substances**.
- the most important **microbicidal substances** are:

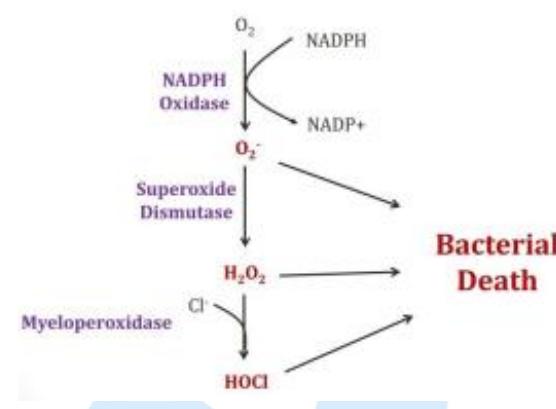
1.Reactive oxygen species

1. Phagocytosis stimulates an oxidative burst characterized by:

1.Sudden **increase in O₂ consumption**.

2.**Glycogenolysis**.

3. $\uparrow\uparrow$ glucose **oxidation**.


4. $\uparrow\uparrow$ production **ROS**.

- The generation of the oxygen metabolites is due to rapid activation of a **leukocyte NADPH oxidase**, called the **Phagocyte Oxidase**, which oxidizes NADPH (reduced nicotinamide adenine dinucleotide phosphate) and, in the process, converts **oxygen to superoxide ion (O₂ -)**.

- Superoxide is then converted by spontaneous dismutation into **hydrogen peroxide (O₂ - + 2H⁺ → H₂O₂)**.

2.Lysosomal enzymes.

1. Phagocytosis stimulates an oxidative burst characterized by:

2.Lysosomal enzymes as:

- Oxidase**
- Myeloperoxidase (HOCl)**
- Elastase** (the most important lysosomal enzyme involved in bacterial killing)
- Acid **hydrolase** (degradation of M.O)

- Other leukocytic killing granules:

1. **Bactericidal Permeability** → increasing protein which causes **phopholipase stimulation** → degradation membrane phopholipids.
2. **Lysozyme**: degradation of bacteria coat **oligosaccharides**.
3. **Major basic protein**: eosinophil **granule cytotoxic for parasites**.
4. **Defensins**: Peptides kill bacteria by **creating holes in their membranes**.

Leukocyte Induced Tissue Injury:

1. Part of **normal defense against infectious M.O.**
2. **Host response against** some infection that are **difficult to eradicate as TB or some viral infections**.
3. **Reperfusion Injury**: After **MI** inflammation may prolong & **exacerbate the injury**
4. **Autoimmune disease**
5. **Allergic disease** E.g. asthma
 - Leukocytes may release toxic products into the **extra-cellular spaces** as well as **within phagolysosome**.

- The most important substance are:

- Lysosomal enzymes**
- ROS**

- Mechanisms

1. Phagocytic vacuole **remains transiently open** to the outside before complete closure of the phagolysosome.
2. If the cells encounter material **cannot be easily ingested** such as **immune complexes** deposited on flat fixed surfaces as **glomerular B.M.**
3. Following phagocytosis of **potentially injurious substances** such as urate crystals which **damage the membrane** of the phagolysosome.

Leukocytes Induced injury / Underlying Human disease

✓ **Acute Disorders**

- 1.Acute respiratory distress syndrome (**Neutrophils**)
- 2.Acute transplant rejection (**Lymphocytes, Abs & complement.**)
- 3.Asthma (**eosinophils, IgE**)
- 4.Glomerulonephritis (**Ab, complement**)
- 5.Septic shock (**cytokines**)
- 6.Vasculitis (**Ab, complement, Neutrophils**)

✓ **Chronic disorders**

- 1-Arthritis (**lymphocytes, macrophages, Ab**)
- 2-Asthma (**eosinophils, other WBC, IgE**)
- 3-Atherosclerosis (**Macrophage, lymphocytes**)
- 4-Chronic transplant rejection (**Lymphocyte, cytokines**)
- 5-Pulmonary fibrosis (**Macrophages, Fibroblasts**)

Defects in Leukocyte Function

- MCC of defective inflammation are:
- 1- **bone marrow suppression** caused by **tumors and chemotherapy or radiation** (→ **decreased leukocyte numbers**)
- 2-**metabolic diseases** such as diabetes (causing **abnormal leukocyte functions**).

Inherited defects in leukocyte function

1. Defects in Leukocyte Adhesion

- a. LAD type 1 (**defective integrins** LFA-1 and Mac-1)
- b. LAD type 2 (**absence of sialyl-Lewis X**)

2. Defects in Microbicidal Activity

e.g **Chronic Granulomatous Disease**

- a genetic **deficiency** in one of the several components of the **phagocyte oxidase** responsible for generating **ROS**.
- **engulfment** of bacteria **does not result in oxidative burst**.
- in an attempt to control these infections, the microbes are surrounded by **activated macrophages**, forming the "**GRANULOMAS**".

3. Defects in Phagolysosome formation

e.g **Chediak-Higashi disease** aut.recessive immune deficiency disorder

4. Defects in Toll-like receptor signaling pathway

Morphologic Patterns of Acute Inflammation

This is modified by:

1. **Severity** of the inflammatory **response**.
2. Its **specific cause**.
3. The **type of tissue** involved.

Types of Acute inflammation

1. Serous inflammation

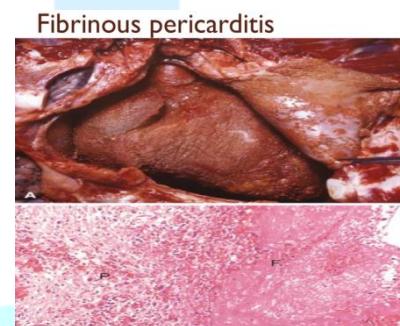
- Accumulation of **transudate**.
- it derives either **from the serum** or **from the secretions of mesothelial cells** lining the peritoneal, pleural, and pericardial cavities.

- serous exudate accumulated either **within** or **immediately beneath** the epidermis of the skin .

- Examples:

- ✓ **Skin blisters**
(**burns, friction, viral infection**)
- ✓ Fluid in serous cavity = effusion

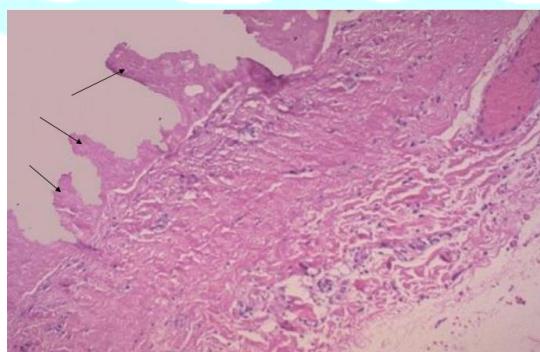
2. Fibrinous inflammation


- more **severe injuries** → greater **vascular permeability** that allows **large molecules** such as **fibrinogen** to pass the endothelial barrier.
- A **fibrinous exudate** is characteristic of inflammation in the **lining of body cavities**, such as the **meninges, pericardium, and pleura**.
- Such exudates is **degraded by fibrinolysis**, and the **accumulated debris** may be removed by **macrophage** → resolution.

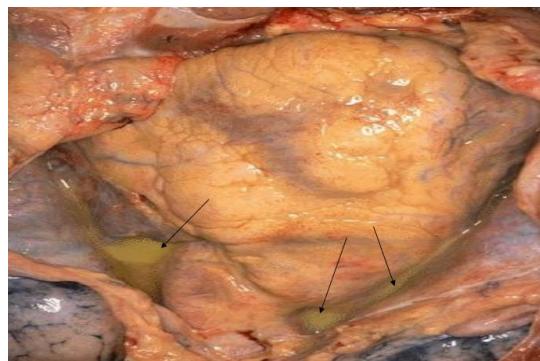
Examples: Meningitis, Pericarditis, Pleuritis

- Outcomes:

- a. resolution
- b. organization → scarring


- failure to completely remove the fibrin → the ingrowth of fibroblasts and blood vessels .

- the pericardial cavity has been opened to reveal a **Fibrinous Pericarditis** with **strands of stringy pale fibrin** between **visceral and parietal pericardium**.

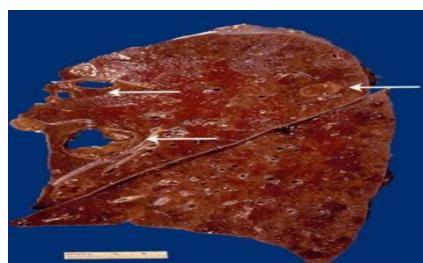


- **Microscopically**, the fibrinous exudate is seen to consist of **Pink Strands Of Fibrin** jutting from the pericardial surface(arrows). Below this, there are a **few scattered inflammatory cells**.

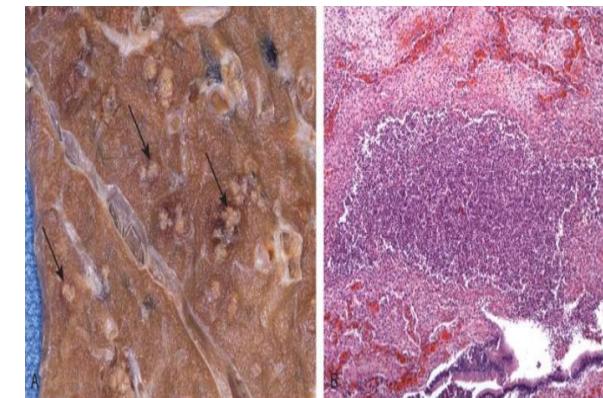
3. Suppurative (Purulent) Inflammation

- Purulent exudate (pus) Consists of **Neutrophils**, **Necrotic Cells** & **Edema Fluid**.
- Mostly caused by **pyogenic M.O as Staphylococci**.

The yellowish fluid in this opened pericardial cavity is **A Purulent Exudate**.


A purulent exudate is seen beneath the **meninges** in the brain of this patient with acute meningitis from **Streptococcus Pneumoniae Infection**. The exudate obscures the sulci.

- **Extensive Purulent Peritonitis** that resulted from rupture of the colon. A thick yellow exudate coats the **Peritoneal Surfaces**.


Abscesses

- are **focal collections of pus** that may be caused by **seeding of pyogenic organisms** into a tissue or by **secondary infections of necrotic foci**.
- Abscesses typically have **a central, largely necrotic region** rimmed by a **layer of preserved neutrophils** with a surrounding **zone of dilated vessels** and **fibroblastic proliferation** indicative of early repair.
- As time passes the abscess may become **completely walled off** and eventually be **replaced by connective tissue**.

- The white arrows mark areas of **abscess formation in the upper lobe of this lung**. The **liquefactive necrosis of an abscess is apparent**, because the purulent contents are draining out to leave a cavity.

- **Focal Abscess In The Lung**. The alveoli in that area have been destroyed.

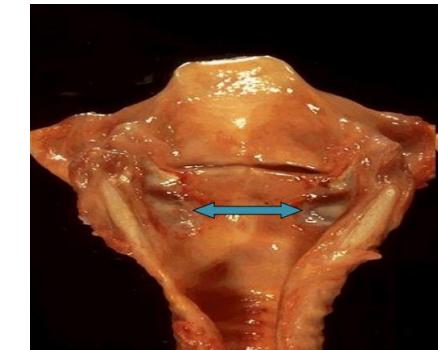
4. Ulceration

- **Ulcer**: **Local defect or excavation of the surface** of an organ or tissue produced by **necrosis of cells & sloughing inflammatory necrotic tissue**.

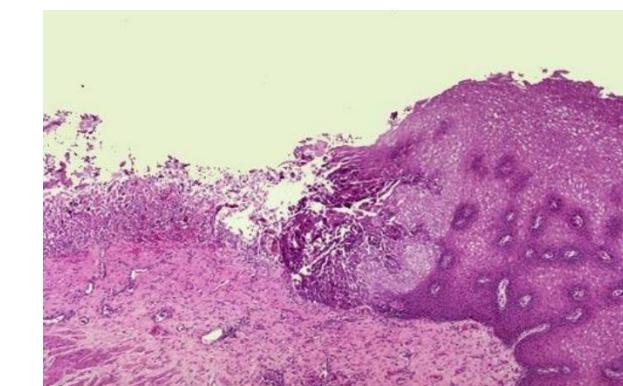
- Ulcers occur **only on surface**.

- **Sites :**

- a. Mucosa of mouth, stomach, intestine
- b. Skin of lower extremities


- **Examples:**

Peptic ulcer of stomach or duodenum


One consequence of **acute inflammation** is **ulceration**. This occurs on epithelial surfaces. Here the gastric mucosa has been lost, or ulcerated.

Below the vocal cords in this larynx **are large ulcerations**. Such **subglottic ulcers** are produced with prolonged **endotracheal intubation** in which the cuff of the endotracheal tube fits too tight.

Esophageal acute ulcer

Outcome of Acute Inflammation

- The Outcome of Acute Inflammation depends on:

1. The **nature of intensity** of injury.
2. The **site & tissue** affected .
3. The **ability of the host to respond**.

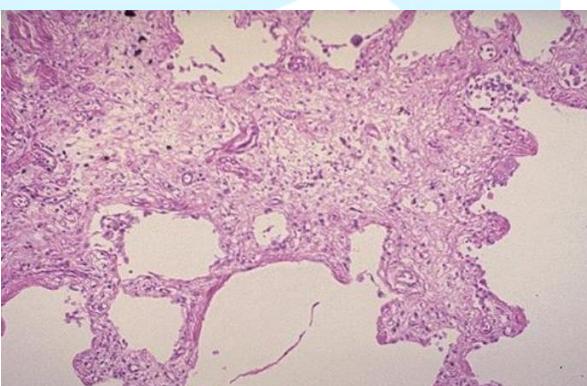
- The outcomes of acute inflammation are:

1. Resolution

- To restore **morphological** & **functional** normality.
- It occurs when:
 1. Injury **is limited or short-lived**.
 2. There is **no or minimal tissue damaged**.
 3. Tissue is **capable of regeneration**.

2. Progression to Chronic Inflammation

1. It occurs when the **offending agent is not removed**.
2. It depends on the **extent of the initial injury**.
3. It depends on the **capacity of** the affected tissue to **regrow**.


3. Scarring or Fibrosis

❖ It occurs when

1. Tissue destruction **is profound**.
2. Inflammation occurs in **tissue that don't regenerate**.
3. Inflammation is associated **with extensive fibrinous exudates**.

The end result of inflammation can be scarring.

Here, the alveolar walls are thickened and filled with pink collagen.

4. Abscess formation

- Abscesses may form when:

1. There is **extensive neutrophilic infiltrate** .
2. Infection by certain **bacteria or fungi**.

- The usual outcome is **scarring**.