

Chemical Mediators of Inflammation

Types:

1- Cellular mediators

-Produced locally by **cell** at the site of **inflammation**.

-Types:

- 1.Preformed in **intracellular granule**, **rapidly** secreted upon cellular **activation** (e.g. **histamine in mast cells**).
- 2.**Newly synthesized** in response to **a stimulus (e.g. PGs & cytokines)**.

2- Plasma Proteins

-Typically **synthesized by the liver** as **inactive precursors** that are **activated at the site of inflammation** (e.g. **Complement proteins & kinins**)

- ✓ Most mediators act **on target cells** by binding to **specific receptors on target cells**.
- ✓ may act **on only one or a very few targets**.
- ✓ may have **wide-spread action** with **different outcomes** depending on target cell
- ✓ have **direct enzymatic** &/or **toxic activities** (e.g. Lysosomal proteases & ROS).
- ✓ may **stimulate target cell to release 2ry effectors molecules** → **amplify the response or cause –ve control on the response**.

The actions of most mediators are tightly **REGULATED DUE TO :**

- 1.Quick decay (arachidonic acid metabolites)
- 2.Inactivation by Enzymes (Kininase → inactivates bradykinin)
- 3.Elimination (e.g. antioxidants → ROS)
- 4.Inhibition (e.g. complement inhibitory proteins)

Most likely Mediators in inflammation:

❑ Vasodilation

- Histamine ,Prostaglandins, Nitric oxide

❑ Increased vascular permeability

-Vasoactive amines, C3a & C5a (by liberating vasoactive amines), Bradykinin, leukotrienes C4,D4, E4, Platelet-activating factor(PAF), substance P.

❑ Chemotaxis, Leukocyte activation

- TNF, IL-1, C5a, C3a, leukotriene B4, Bacterial products, Chemokines (e.g. IL-8)

❑ Fever

- IL-1, TNF, Prostaglandins

❑ Pain

- Prostaglandins, Bradykinines, neuroPeptides.

❑ Tissue damage

- Neutrophil & macrophage **lysosomal enzymes**, **ROS**, **Nitric Oxide**

A. VASOACTIVE AMINES

- **Histamine & Serotonin**
- Preformed molecules in **mast cells, basophils, platelets**.

1- Histamine is released in response to:

- 1.Physical injury as trauma or heat.
- 2.Hypersensitivity reaction (IgE binding to mast cell)
- 3.Anaphylatoxins (C3a & C5a)
- 4.Leukocyte-derived histamine-releasing proteins
- 5.Neuropeptides(e.g. substance P)
- 6.Certain cytokines (e.g. IL-1, IL-8)

- Soon after histamine is released, it is inactivated by histaminase.

•Function

- 1.Arteriolar dilation
- 2.Increase vascular permeability (Immediate phase mediator)

2- Serotonin found in **platelets dense body granules**.

- Serotonin is released during platelets aggregation.

B. Arachidonic Acid Metabolites (Eicosanoids)

- **Prostaglandins, Leukotrienes, Lipoxins.**

• **Short-lived** locally acting hormones.

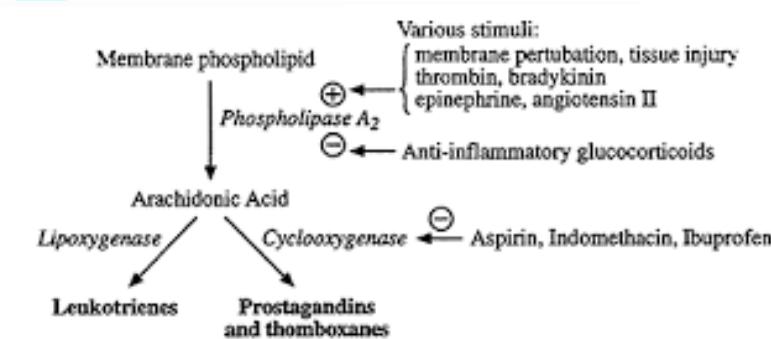
•Source:

- 1-Leukocytes, 2-Mast cells, 3-Endothelial cells, 4-Platelets

•Synthesis Of Eicosanoids:

-arachidonic acid is a component of cell membrane phospholipids.

-it is released by the action of **PHOSPHOLIPASE** which can be activated by **C5a**.


-AA metabolism occurs through 2 pathways:

1. Cyclooxygenase Pathway PGs

and Thromboxanes.

2. Lipoxygenase pathway

leukotrienes and lipoxins.

•Actions Of Eicosanoids:

1-Vasodilatation

PGI2,PGE2, PGF2 α , PGD2

2-Vasoconstriction

thromboxane A2 , leukotrienes C4 ,D4 ,E4

3-Increased vascular permeability

leukotriene C4 ,D4,E4

• Types:

1.Thromboxane A2 (Platelets)

Plat. Aggregation & Vasoconstriction

2.PGI2 (Endothelial Cells)

Vasodilation

Plat. Aggregation inhibitor

Pain and fever.

3. PGD2 (Mast Cells) vasoDilatation

4. Leukotrienes (Neutrophils)

LTB4 (produced by neutrophils & macrophages) ----- chemotactic for neutrophils)

LTA4 → LTB4 , LTC4

LTC4 → LTD4 & LTE4

(mast cells)

Vasoconstriction

Bronchospasm

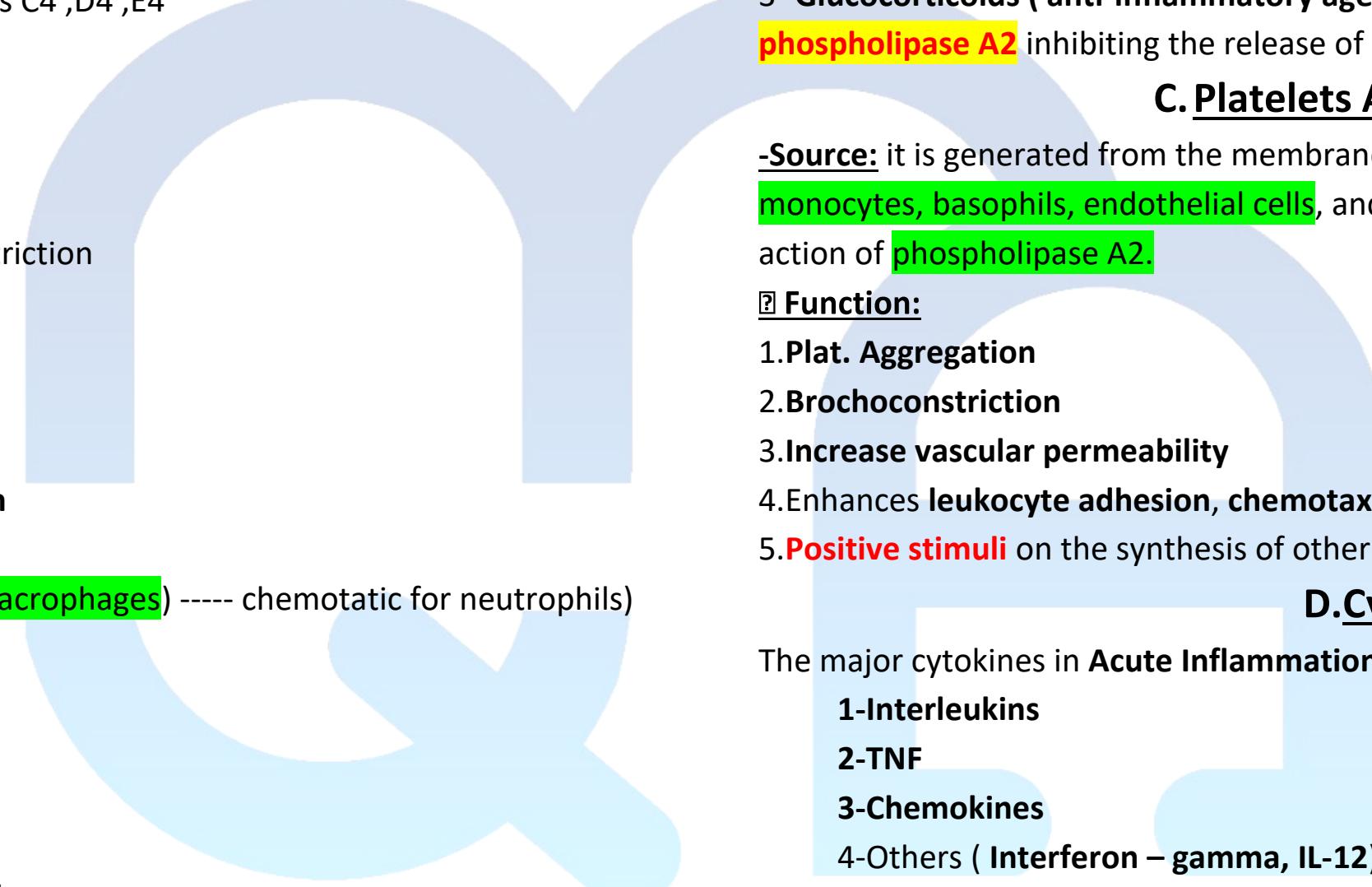
Increased vascular permeability

5. Lipoxins

- Once Neutrophils enter the tissue they start to produce lipoxins.

- Functions :

Inhibitors of inflammation (Neg. stimuli on neutrophil chemotaxis & adhesion)


- Source: Neutrophils / Platelets.

Clinical applications

1-Aspirin and NSAIDs as Ibuprofen

inhibit cyclooxygenase activity inhibition of PGs synthesis → ↓↓↓ Pain & Fever.

- Cyclooxygenase Enzymes COX-1 & COX-2

2- In Gastric Mucosa only COX-1 is present generating PGs that protect the mucosa against acid-induced damage.

- Aspirin & NSAIDs inhibit COX-1 & COX-2 → Gastric Ulceration.
- Highly selective COX-2 inhibitors are used (induce prothrombotic state)

3- Glucocorticoids (anti-inflammatory agents) act by inhibiting the activity of phospholipase A2 inhibiting the release of AA metabolites.

C. Platelets Activating Factor

-Source: it is generated from the membrane phospholipids of neutrophils, monocytes, basophils, endothelial cells, and platelets (and other cells) by the action of phospholipase A2.

Function:

- 1.Plat. Aggregation
- 2.Brochoconstriction
- 3.Increase vascular permeability
- 4.Enhances leukocyte adhesion, chemotaxis and degranulation.
- 5.Positive stimuli on the synthesis of other mediator esp. eicosanoids.

D.Cytokines

The major cytokines in Acute Inflammation are:

1-Interleukins

2-TNF

3-Chemokines

4-Others (Interferon – gamma, IL-12) chronic inflammation.

a. Tumor necrosis factor (TNF) & interleukin-1(IL-1)

Source:

1. Activated macrophages
2. Mast cells
3. Endothelial cells.

Stimuli

- 1.Microbial products
- 2.Immune complexes
- 3.Products of T-lymphocytes
- 4.Toxins, Physical injury

Function

1. Endothelial activation
- TNF & IL-1 simulate adhesion molecule on endothelial cell → ↑↑leuk. Binding.
2. Enhance the production of other cytokines (chemokines & eicosanoids).
3. TNF ↑↑ the thrombogenicity of endothelium.

4. TNF causes **aggregation & activation of neutrophils**.
5. IL-1 activates tissue **fibroblasts** with \rightarrow \uparrow proliferation & production of ECM.
6. Systemic acute phase reaction as **fever, lethargy, cachexia, increase neutrophil in blood, increase hepatic synthesis of various acute-phase proteins, & release of corticosteroids**.
7. **Septic shock** : DIC , hypoglycemia , hypotension.

b. Chemokines

-**Chemoattractant** for leukocytes.

-**Classification:**

1. <u>CXC chemokines</u>	2. <u>CC chemokines</u>
-Acts on neutrophils .	-Acts on monocytes .
-E.g IL-8 , produced by activated macrophages, endothelial cells, mast cells, fibroblasts.	<ul style="list-style-type: none"> - 4-RANTES (regulated on activation normal T expressed and secreted) -chemotactic for memory CD4+ T cells and monocytes - 5-eotaxin (chemotactic for eosinophils).

E. Reactive O₂ species (ROS)

-Released from **activated neutrophils & macrophages**.

-**ROS at low levels:**

$\uparrow\uparrow$ chemokines, cytokines & adhesion molecules.

-**ROS at high level:**

Induce tissue injury by several ways:

1. **Endothelial damage** with thrombosis & increase permeability.
2. Protease activation & anti-protease inactivation \rightarrow increase **breakdown of ECM**
3. **Direct injury to other cell types**.

F. Nitric oxide (NO)

-**Short lived** soluble **free radical gas**.

-Produced by many cell types.

Function:

- 1-In **CNS**, it regulates **neurotransmitters release & blood flow**.
- 2- **Cytotoxic** metabolite for killing microbes.
- 3- Smooth muscle **relaxation** & vasodilation.

- 4-**Antagonise** ALL stages of Platelets Activation. (Adhesion, aggregation, degranulation)
- 5- $\downarrow\downarrow$ **leukocyte recruitment** at inflammatory sites.
- 6-**Cytotoxic agent** in activated macrophages.

G. Lysosomal Enzymes

• **Acid proteases:**

Active within **Phagolysosomes**

• **Neutral proteases (active in ECM)**

Elastase, collagenase, cathepsin.

• **Function:**

1. **Destruction of ECM**.
2. **Cleavage of complement system** C3 & C5 to generate C3a & C5a(vasoactive mediators).
3. Generation of **bradykinin** - like peptide from kininogen.

• **Antiproteases**

• e.g **α -1-antitrypsin (inhibitor of neutrophil elastase)**

Plasma Protein Derived Mediators

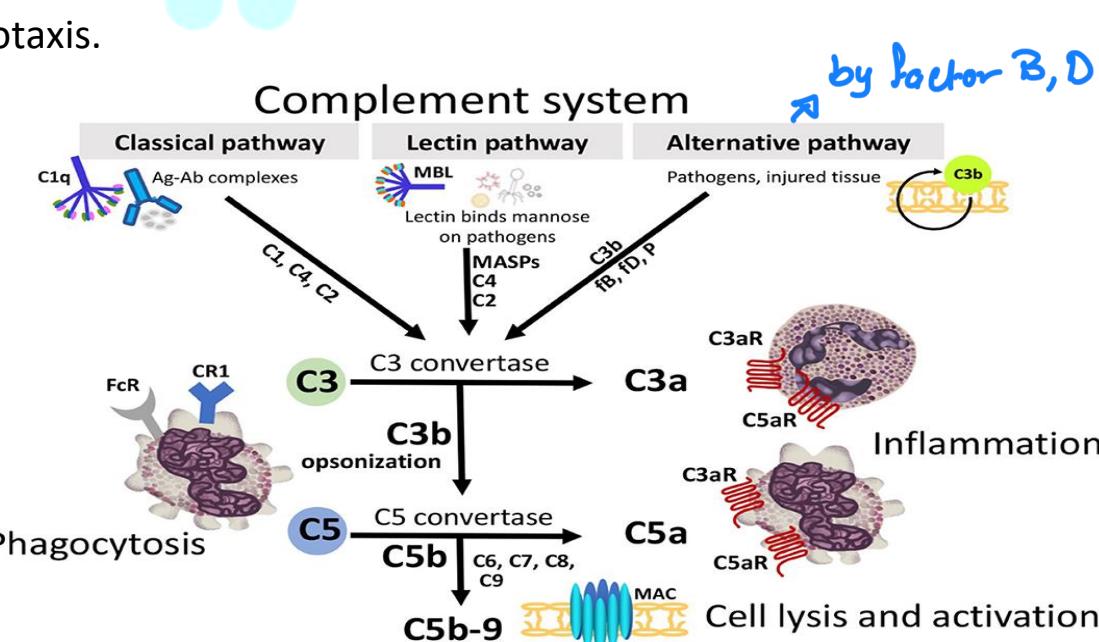
- Circulating proteins are of 3 types:

1- Complement system

2- Kinin system

3- Coagulation system

A. Complement system


-**Plasma proteins** that play an important role **in host defense & inflammation**.

-**Function:**

1. Opsonization
2. Increase vascular permeability
3. Leukocyte chemotaxis.

- **C1-C9**

- The critical step in biologically active components is the **activation of C3 by cleavage**.

- C3 cleavage occurs via **3 pathways**:

A. Classical pathway

Triggered by **fixation of C1 to Ag-Ab complexes**.

B. Alternative pathway

Triggered by **endotoxins, microbial cell wall** involving other plasma proteins as **properdin** and **factor B & D**.

C. Lectin pathway

Plasma lectin binds **mannose residue on microbes** → activates C1 in **the absence of Abs.**

✓ **C3 convertase** → **C3a & C3b**

a. C3b has the following effects :

- 1- C3b → **opsonization** → phagocytosis of M.O
- 2- C5 convertase → C5a & C5b
- 3- Formation of **Membrane Attack Complex** that generates holes in the membranes of invading M.O

b. C3a has the following effects :

- 1- recruitment and activation of leukocytes
- 2- increase vascular **permeability** (C5a also)
- 3- **vasodilatation** by inducing mast cells to release histamine (C5a)
- 4- activation of LOX pathway of AA metabolism in neutrophils & macrophages
- 5- chemotaxis

Functions of Complements

1. Vascular effect

C3a & C5a → Vasodilatation & increase permeability by inducing histamine release

2. C5a activate lipoxygenase pathway of AA metabolism in neutrophils & macrophages causing release of inflammatory mediators.

3. Leukocyte activation adhesion & chemotaxis

C5a potent **chemotactic** agent for neutrophils, monocytes, eosinophil & basophils

4. Phagocytosis

C3b Acts as **opsonin**

- Activation of complement is controlled by **regulatory proteins**.

B. Coagulations System

Activation of **Factor XII (hageman factor)** initiates **4 systems** involved in **inflammatory response**:

1. **Kinin System** → **Vasoactive Kinins**.

2. **Clotting system** → positive stimuli on **Thrombin, Fibrinopeptide & Factor X**.

3. **Fibrinolytic System** → **plasmin** & inactivating **thrombin**.

4. The **Complement System** and **formation of anaphylatoxins C3a & C5a**.

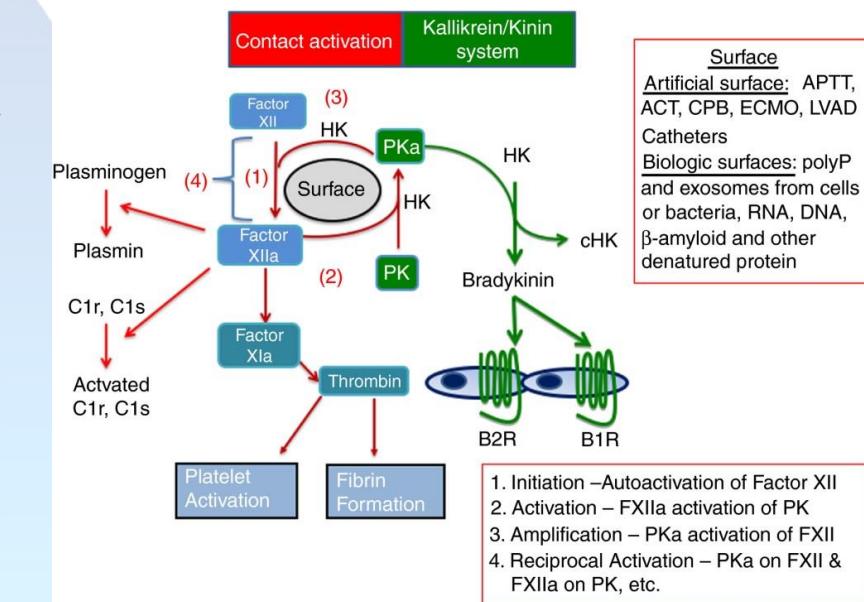
- Factor XII is a protein synthesized by liver and **activated by collagen, B.M or activated platelets** along with **HMWK** cofactor.

- Factor XIIa → cleavage of several proteins of **Kinin & coagulation systems**

- In clotting system factor XIIa

→ activation of **thrombin** →

1- cleavage of **fibrinogen** into **fibrin** → **fibrin clot**.


2- increase **leukocyte adhesion**.

3- generation of **fibrinopeptides** that increase **vascular permeability & chemotaxis**.

- Factor XIIa also **activates fibrinolytic system** to limit clotting by cleaving fibrin.

- **Plasminogen activator** released from endothelium & leukocytes cleaves plasminogen to produce plasmin that acts as protease & cleaves fibrin.

- Plasmin also **activates C3 & produce C3a** .

C. Kinin system

• Result in formation **bradykinin**

• Bradykinin causes:

1. Increase vascular **permeability**
2. Arteriolar **vasodilation**
3. Bronchial **smooth muscle contraction**.
4. **Pain**
5. **Activation of Hageman factor (Factor 12)**.