

Cutaneous Wound Healing

• Phases:

- 1-Inflammation
- 2-Formation of **granulation tissue**
- 3-ECM **deposition & remodeling**

• Depending on the nature of the wound, the healing of cutaneous wounds can be **of 2 types:**

- 1-Healing By First Intention (Primary Union).
- 2-Healing By Second Intention (Secondary Union).

• Sequence Of Processes:

1. Induction of an **acute inflammatory response** by the initial injury.
2. **Parenchymal cell regeneration**
3. **Migration & Proliferation** of both parenchymal & connective tissue cells.
4. **Synthesis of ECM** proteins
5. **Remodeling of parenchymal elements** to restore tissue functions.
6. **Remodeling of C.T** to achieve wound strength.

1- Healing By First Intention

- Healing of **clean, Uninfected surgical incision** approximated by **surgical sutures** = **primary union**.
- Cell death & loss is **minimal**.
- **Epithelial regeneration** predominated **over** fibrosis.
- **Dehydration of blood clot** at the surface of incisional gap → scab → **protection of healing site**.

Steps Of Healing

First 24 Hours:

- **Neutrophils** at the margin of the incision migrate **toward the fibrin clot**.
- **↑↑ mitotic activity** in **epidermal basal cells** at the **edge** of the incision.

24 -48 Hours

- **Epithelial cell proliferation & migration** from **both edges** along the dermis.
- **Deposition of BM**.
- **Formation of thin** but **continuous epithelial layer beneath** the surface scab.

By Day 3

- Neutrophils **are replaced by macrophages**.
- **Granulation tissue formation**.
- **New vessels** show **increase permeability** due to incompletely formed interendothelial junctions & **VEGF**-induced increased vessel permeability.
- **Deposition of collagen** at the incision **margins** but **without bridging** the incision.
- **Thickening of epidermal covering** due to **continuous epithelial cell proliferation**.

By Day 5

- **Peaks of neovascularization**.
- Granulation tissue **fills the incisional gap**.
- **Abundance of collagen fibrils**
- Collagen fibrils **begin to bridge** the gap.
- Epidermis **recovers its normal thickness** with **surface keratinization**.

During the second week

- Continuous **collagen accumulation** & **fibroblast proliferation**.
- **↓↓ Inflammatory infiltrate**. & **Edema**. & **Vascularity**.
- **↑↑ collagen deposition** within the incision & **regression of vascular channels**.

By the end of the First month:

- The scar composed of cellular connective largely **devoid of inflammatory cells**.
- **Normal epidermis** covering.
- The **dermal appendages** in the line of incision are **permanently lost**.
- The tensile strength of the wound **increases with time**.

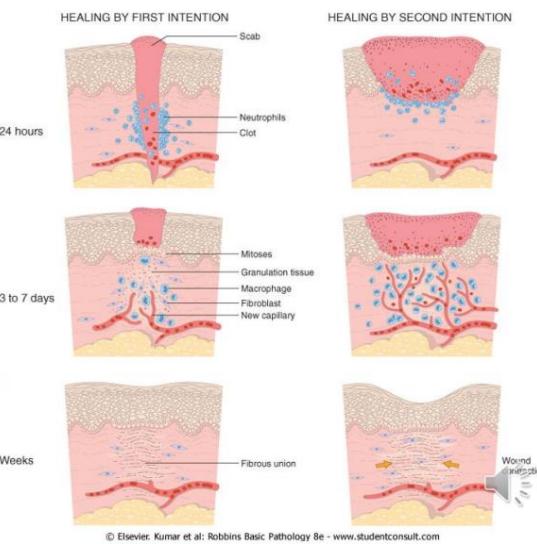
Duration	Features
Immediately after injury	Fibrin & platelets to form clot
Day 1	Neutrophils & blood clots
Day 3	<ul style="list-style-type: none">• Neutrophils replaced by macrophages• Early granulation tissue• No bridging of incision gap
Day 5	<ul style="list-style-type: none">• Maximum granulation tissue deposition• Collagen bridges the incision gap• Recovery of epidermal thickness• Neovascularization is maximum
Day 14	<ul style="list-style-type: none">• Maximum collagen deposition
Day 28	<ul style="list-style-type: none">• Scarring completed

2- Healing by Second Intention

- Healing by **secondary union**.
- **Extensive** tissue loss.
- E.g.:
 - 1- large wounds 2- abscess formation 3- ulceration 4- infarction of parenchymal organs
 - Regeneration of parenchymal cells alone **cannot** restore the **original architecture**.
 - Secondary Healing differs from Primary Healing in different aspects:
 1. **A larger clot or scab** rich in fibrin & fibronectin forms at the surface of the wound.
 2. **Inflammation is more intense** because the **volume of necrotic tissue is large**.
 3. **Larger amount of granulation tissue**
 4. Leading to formation of **greater mass of scar tissue**.
 5. **Wound contraction**

Large skin defect maybe **reduced by 5-10%** of their original size due to wound contraction within 6 weeks largely due to **the presence of Myofibroblasts**.

Wound Strength


- Carefully sutured wounds have **70%** of the strength of **unwounded skin** mainly due to **the presence of surgical sutures**.
- When **sutures removed (at one Week)**, the wound strength is **around 10%** of that of unwounded skin.
- The wound strength $\uparrow\uparrow$ rapidly over the following **4 weeks**.
- Wound strength reaches **around 70–80%** of normal **by 3 months** and **does not improve** beyond that.
- The **increasing tensile strength** results from :
 - **collagen synthesis during the first 2 months**.
 - **structural modifications of collagen** (cross linking & increase fiber size).

Primary Union (Healing by 1st intention)

- E.g., surgical wound
- Narrow incision space resulting in a limited inflammatory reaction
- Granulation tissue invade incision space
- Limited amount of wound contraction
- Healing in short time

Secondary Union (Healing by 2nd intention)

- E.g. traumatic wound
- Large tissue defect resulting in a more intense inflammatory reaction
- Large amount of granulation tissue
- More amount of wound contraction
- Healing take long time

Factors affecting Wound Healing

✓ First: Extrinsic Factors causing delay in healing:

- 1- **Infection**
- 2- **Nutrition** (protein deficiency, vit. C)
- 3- **Drugs (steroids)** → poor wound strength due to decreased fibrosis. However in **corneal infections**, glucocorticoids are sometimes prescribed (along with antibiotics) to **reduce the likelihood of opacity that may result from collagen deposition**.
- 4- **Mechanical factors** → wound dehiscence.
- 5- **Poor Perfusion** due to DM, atherosclerosis, varices.
- 6- **Foreign bodies**.

✓ Second: Intrinsic Factors

1. **Type** of injured tissue
2. **Location** of the injury (body cavities).
3. **Chronic inflammatory disease**. LIKE autoimmune Ds.
 - Aberrations of cell growth & ECM production.
 - e.g 1. **keloid** 2. exuberant granulation(**Proud Flesh**).

Factors affecting the outcome of healing:

- 1-The **type and volume** of tissue injured is critical.
 - Complete **restoration of normal** can occur **only** in tissues composed of **stable and labile cells**.
 - Injury to tissues composed of **permanent cells** must inevitably **result in scarring**.
- 2-The **location of the injury** and the **character of the tissue** in which the injury occurs are also important.
 - **E.g:** inflammation arising in tissue spaces (e.g., pleural, peritoneal, synovial cavities) develops **extensive exudates** → **resolution ORGANIZATION**.