

Healing and Repair

- **Repair** : the **restoration** of **tissue architecture** and **function** after an injury.

Tissue Repair

- **Repair involves 2 types of reactions:**

1. **Regeneration** of injured tissue by **Parenchymal Cells** of the same type (return to normal).

2. **Healing by fibrosis** Replacement by connective tissue → scar (when damaged tissue **can not** regenerate or **ECM has been destroyed**).

- **Fibrosis** refers to **extensive deposition of collagen** as a consequence of **chronic inflammation** in **Lungs, liver, kidneys, heart**.

- **Organization**: fibrosis develops in tissue space occupied by inflammatory exudate. Like : **Organizing pneumonia**.

- **Regeneration & Scarring** involve **SIMILAR** mechanisms including:

- **Cell migration**

- **Proliferation**

- **Differentiation**

- **Matrix synthesis**

Cell repair involves proliferation of :

- 1. Remnants of injured cells

- 2. endothelial cells

- 3. fibroblasts

Control of cell growth & differentiation

- **Number of cells in a tissue is determined by:**

- 1. Rate at which **new cells enter** the tissue.

- 2. Rate at which **cells exit** the tissue.

- **Rate of entry of new cells is determined by:**

- 1. **Proliferation** rate

- 2. Cell **death**

- 3. Cell **differentiation**

- **Increase cell number in a tissue is a result of:**

- 1. **Increase** cell **proliferation**

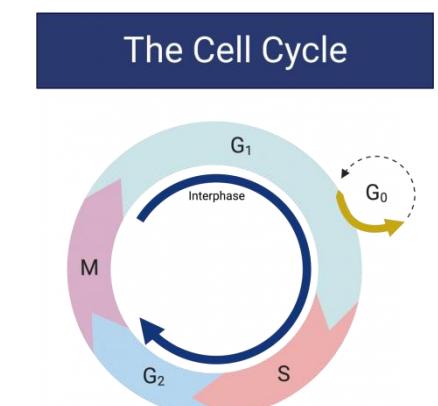
- 2. **Decrease** cell **death**

- **Stimuli of cell proliferation**

1. Injury
2. Cell death
3. Mechanical deformation of tissue
4. Excess of stimulators
5. Deficiency of inhibitors

- **Cell growth can be accomplished by:**

1. **Shortening the length** of cell cycle.
2. Decrease **rate of cell death**.
3. Induction of **resting cells in G0 to enter the cell cycle**.


Cell cycle

- **Phases:**

1. G1: Pre-synthetic growth phase.
2. S: DNA-synthetic phase.
3. G2: pre-mitotic growth phase
4. M: Mitotic phase

G0 = Quiescent cell (outside cell cycle).

- Progression of cells through cell cycle phases is controlled by: the **levels & activities** of a **family of proteins called CYCLINS** which are activated by complexing with proteins called **cyclin-dependent kinases (CDK)**.

A- The Proliferative Potential Of Cells

- The ability of a cell to proliferate is **inversely correlated** with the degree of differentiation.
- Depending on the **regenerative capacity** of the cells and the **relationship to the cell cycle**, the cells of the body are divided **into 3 groups**:

- **First: Labile cells**

- **Continuously** dividing & dying cells
- Regeneration occurs from stem cells that have **unlimited capacity** to proliferate
- Stem cell ----- Cell with **ability to divide** (cell renewal)
- Stem cell ----- **non-mitotic cell** (carry on the normal function of the tissue).

- **Labile cells include:**

1. **Hematopoietic** cells in B.M
2. **Stratified Sq.** epithelium, **skin, oral cavity, vagina, cervix**
3. **Cuboidal** epithelium of **exocrine organs** draining **ducts**, salivary glands, pancreas, biliary ducts
4. **Columar** epithelium of **GIT, uterus, fallopian tubes**.
5. **Transitional** epithelium of **urinary tract**.

• Second: Stable cells

- Quiescent (or have only low level replicative capacity) in their normal state but they can undergo rapid division in response to injury.

- Stable cells include:

1. Parenchyma of solid glandular tissues **as liver, kidney, pancreas**
2. **Endothelial cells**
3. **Fibroblasts**
4. **Smooth muscle**

• Third: Permanent cells

- Terminally differentiated & **nonproliferative** in post natal life.

- Permanent cell include:

1. **Neurons**
2. **Cardiac** muscle cells
3. **Skeletal** muscle cells (**satellite cells** attached to endomysial sheath have some regenerative capacity)

- Injury of permanent cell is **irreversible** & result **In Only Scar**.

Stem cells

- Are **undifferentiated cells** responsible for **generation of cells in tissues**.

- **Characteristic features** :

1-self-renewal capacity

2-asymmetric replication

- **Asymmetric Replication** of stem cells : means that after each division **some cells enter the differentiation** pathway while **others remain undifferentiated** retaining self renewal capacity.

• Types of stem cells :

1- **Embryonic** stem cells in blastocyst.

2- **Adult** (tissue) stem cells

Soluble Mediators

- Cell growth & differentiation are dependent **on extra-cellular signals** derived **from soluble mediators of ECM**.
- The most important signals **are polypeptide growth factors** present in **serum** or produced **locally by cells**.
- Growth factors can act on **one cell type** or **on multiple cell types**.

Functions :

- 1-induction of **cell proliferation**
- 2-relieve blocks on **cell cycle progression**
- 3-prevent **apoptosis**
- 4-enhancement of **cellular protein synthesis**

Types of signaling

1-Autocrine Signaling

- GFs act on **the same cells** that secret them.

-examples

- 1.Immune response
- 2.Compensatory epithelial hyperplasia

2-Paracrine signaling

- act on **cells in the immediate vicinity** of the cell that secrete them.

- examples

- 1.Recruiting inflammatory cells to the site of infection
- 2.Wound healing

3-endocrine signaling

- a regulatory substance as a hormone is **released into blood** and **acts on target cells at distance**.

B- Extracellular Matrix & Cell Matrix interaction

• Function of ECM:

1. It gives **support & rigidity** to the skeleton

2. It **regulates cell** proliferation ,movement & differentiation of the cells within it.

ECM is of 2 forms:

1. Intersitital matrix

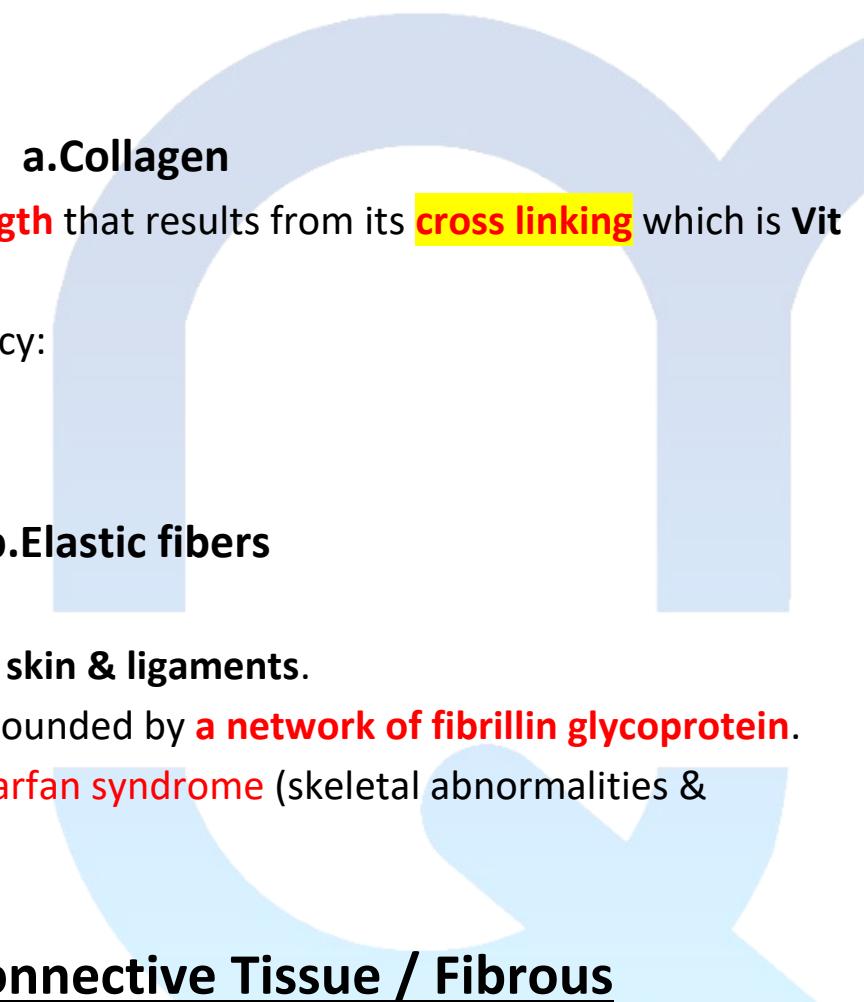
- Presents in **spaces between cells** in connective tissue & between epithelium & supportive vascular & smooth muscle structures.

- It is synthesized by **mesenchymal cells as fibroblasts**.

• **Interstitial matrix is composed of:**

- 1-fibrillar & non-fibrillar collagen. 2-fibronectin. 3-elastin.
- 4-proteoglycans. 5-hyaluronan.

2. Basement Membrane


- Around **epithelial** cells, **endothelial** cells & **smooth muscle** cells.

- Composed of :

1- **collagen type IV.**

2- laminin.

3- proteoglycan.

- it gives the tissue its **tensile strength** that results from its **cross linking** which is **Vit C-dependent**.

- associated diseases of its deficiency:

a.**Osteogenesis imperfecta**

b.**Ehlers-Danlos syndrome**

- It gives **tissue elasticity & recoil**.

- Large **blood vessels** wall ,uterus, skin & ligaments.

- Composed of **Core of elastin** surrounded by **a network of fibrillin glycoprotein**.

- Defect in **fibrillin synthesis** → **Marfan syndrome** (skeletal abnormalities & weakened aortic wall).

C- Repair By Connective Tissue / Fibrous

• Repair occurs by **replacement** of **Non-Regenerated** parenchymal cells **with connective tissue**.

• Repair begins **within 24 hours of injury** by the **emigration of fibroblasts** and the induction of **fibroblast** and **endothelial cell** proliferation.

• By **3 to 5 days**, a specialized type of tissue that is characteristic of healing, called **granulation tissue is formed**.

- **Gross Appearance:** The term granulation tissue derives from the **pink, soft, granular gross appearance**, such as that seen beneath the scab of a skin wound.

- **Histologic Appearance :** is characterized by **proliferation of fibroblasts** and new thin-walled, delicate capillaries (**angiogenesis**), in a loose ECM.

- Granulation tissue then progressively **accumulates connective tissue matrix**, eventually → **the formation of a scar**.

✓ **Repair by connective tissue deposition** consists of **4 sequential processes**:

1. **Angiogenesis.**

2. Migration & proliferation of **fibroblasts**.

3. **Deposition** of **ECM**(scar formation).

4. **Maturation** and **reorganization** of the fibrous tissue (Remodeling).

1-Angiogenesis

• Neoangiogenesis:

It is the **formation of new capillary buds** from pre-existing vessels to produce **new vessels**.

Function:

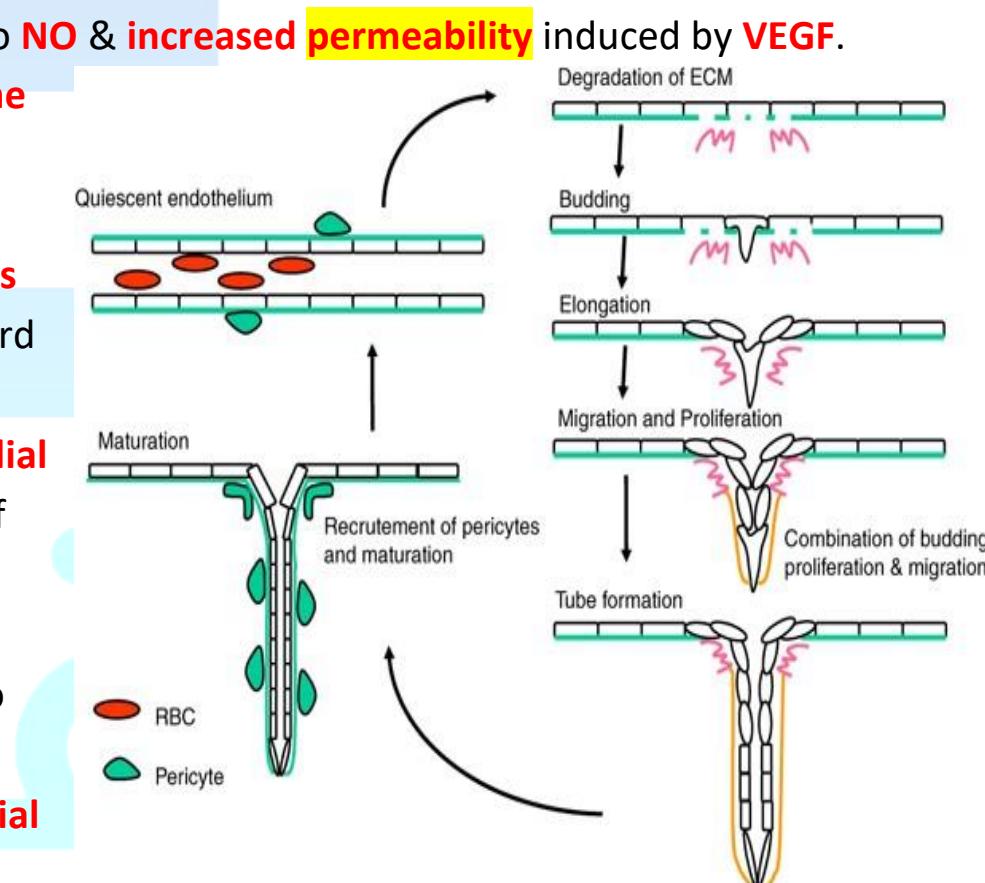
1. **Healing** process

2. **Collateral circulation** at the site of ischemia

3. **Tumor growth**

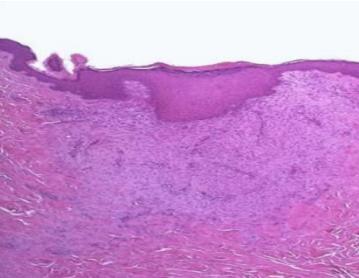
Steps Of Neoangiogenesis

1. **Vasodilatation** in response to **NO** & **increased permeability** induced by **VEGF**.
Degradation of ECM


2. Proteolytic **degradation of the parent vessel** **BM** to form **capillary bud**.

3. **Migration of endothelial cells** from the original capillary toward an angiogenic stimulus.

4. **Proliferation of the endothelial cells** behind the leading edge of migrating cells.


5. **Inhibition of endothelial cell proliferation** & remodeling into capillary Tube.

6. Recruitment of **periendothelial cells (pericytes & smooth muscles)** to form the **mature vessel**.

2/3- Scar Formation

- It builds on **granulation tissue formation** 3-5 days.
- It **involves 2 steps:**
 1. **Migration & proliferation of fibroblasts** into site of injury.
 2. Deposition of **ECM** by proliferating fibroblasts.

4- ECM & Tissue Remodeling

- **Maturation & reorganization** of the fibrous tissue.
- The outcome of repair process is the **BALANCE** between **ECM synthesis & degradation**.
- The degradation of collagen & ECM components by **metalloproteinases** which depend on **zinc ions for activation**.

Metalloproteinases.

- These include:
 - **Collagenases** → fibrillar collagen.
 - **Gelatinases** → amorphous collagen & Fibronectin.
 - **Stromelysins** → Proteoglycans, laminin, fibronectin & amorphous collagen.
- Source of these enzymes:
1-Fibroblasts 2-Macrophages 3-Neutrophils 4-Synovial cell 5-Some epithelial cells.

-**Synthesis of these enzymes is stimulated by:**

GFs: **PDGF, EGF, IL-1, TNF**

äää