

ORAL BIOLOGY AND PHYSIOLOGY

COURSE CODE: 1601106
2 credit Units

Calcium metabolism

Dr Kasimu Ghandi Ibrahim & Dr Ahmad Taha
kibrahim@zu.edu.jo; ataha@zu.edu.jo

Week 13, Lecture 1

Intended Learning Outcomes

- Identify the importance of calcium and normal requirements
- Understand the calcium metabolism regulators: VD, PTH and calcitonin
- List the functions of calcium
- Understand calcium metabolism disorders

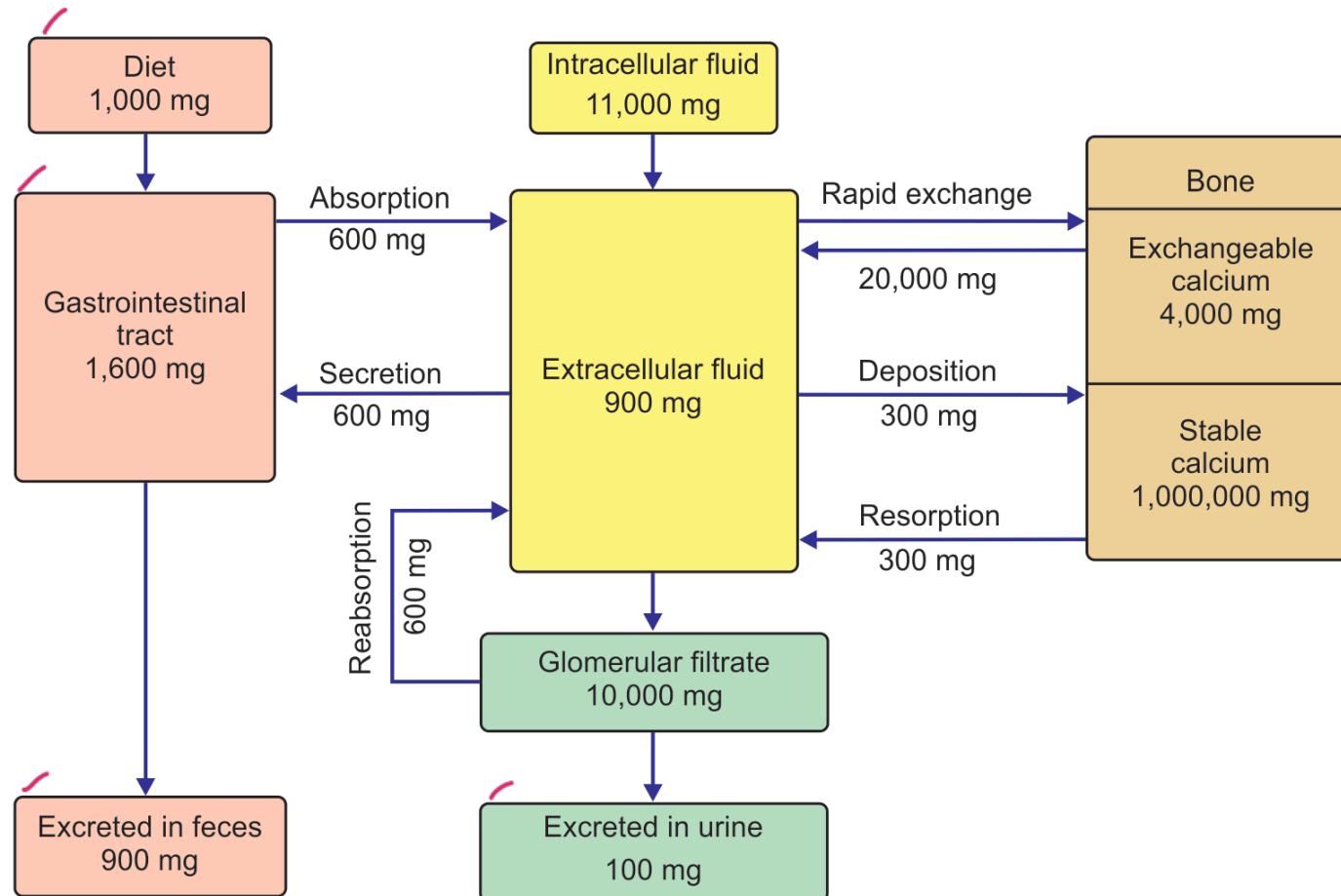
Importance of calcium

- **It is essential for many activities in the body such as:**
 - Bone and teeth formation.
 - Neuronal activity.
 - Skeletal muscle activity.
 - Cardiac activity.
 - Smooth muscle activity.
 - Secretory activity of the glands.
 - Cell division and growth.
 - Coagulation of blood.

Normal values

- In a normal young healthy adult, there are about 1,100 g of calcium in the body.
- It forms about 1.5% of the total body weight.
- About 99 % per cent of calcium is present in the bones and teeth.
- The rest of the calcium is present in the plasma. 1%
- * The normal blood calcium level ranges between 9 and 11 mg/dL.

Types of calcium


- **Calcium is present in three forms in plasma:**
 - Ionized or diffusible calcium.
 - Non-ionized or non-diffusible calcium.
 - Calcium bound to albumin.
- **Ionized calcium** is found freely in the plasma and it forms about 50% of plasma calcium.
[Not bound]
- It is essential for vital functions like neuronal activity, muscle contraction, cardiac activity, secretions in the glands, blood coagulation, etc.

Types of calcium

- About 8 to 10% of plasma calcium is present in **non-ionized** form such as calcium bicarbonate.
- About 40 to 42% of calcium is **bound with plasma protein** particularly, albumin.

Calcium in bones

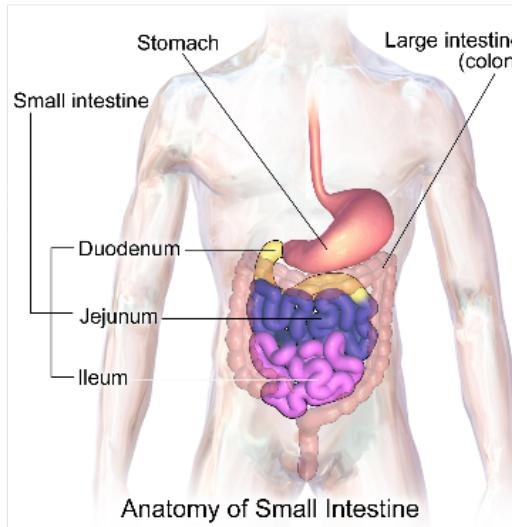
- Calcium is constantly removed from the bone and deposited in bone.
- The process of calcium metabolism is explained schematically in the following figure

Schematic diagram showing calcium metabolism. The values belong to adults

Sources of calcium

- **Dietary Source**
 - Available in several foodstuffs such as milk, cheese, vegetables, meat, egg, grains, sugar, coffee, tea, chocolate, etc.
- **From Bones**
 - Besides dietary calcium, blood also gets calcium from bone by resorption.

Daily requirements of calcium


- 1 to 3 years = 500 mg
- 4 to 8 years = 800 mg
- 9 to 18 years = 1,300 mg
- 19 to 50 years = 1,000 mg
- 51 years and above = 1,200 mg
- Pregnant ladies and lactating mothers = 1,300 mg

Absorption and excretion of calcium

- Calcium taken through dietary sources is absorbed from the GI tract into the blood and distributed to various parts of the body.
- Depending upon the blood level, the calcium is either deposited in the bone or removed from the bone (resorption).
- Calcium is excreted from the body through urine and faeces.

Absorption from GI Tract

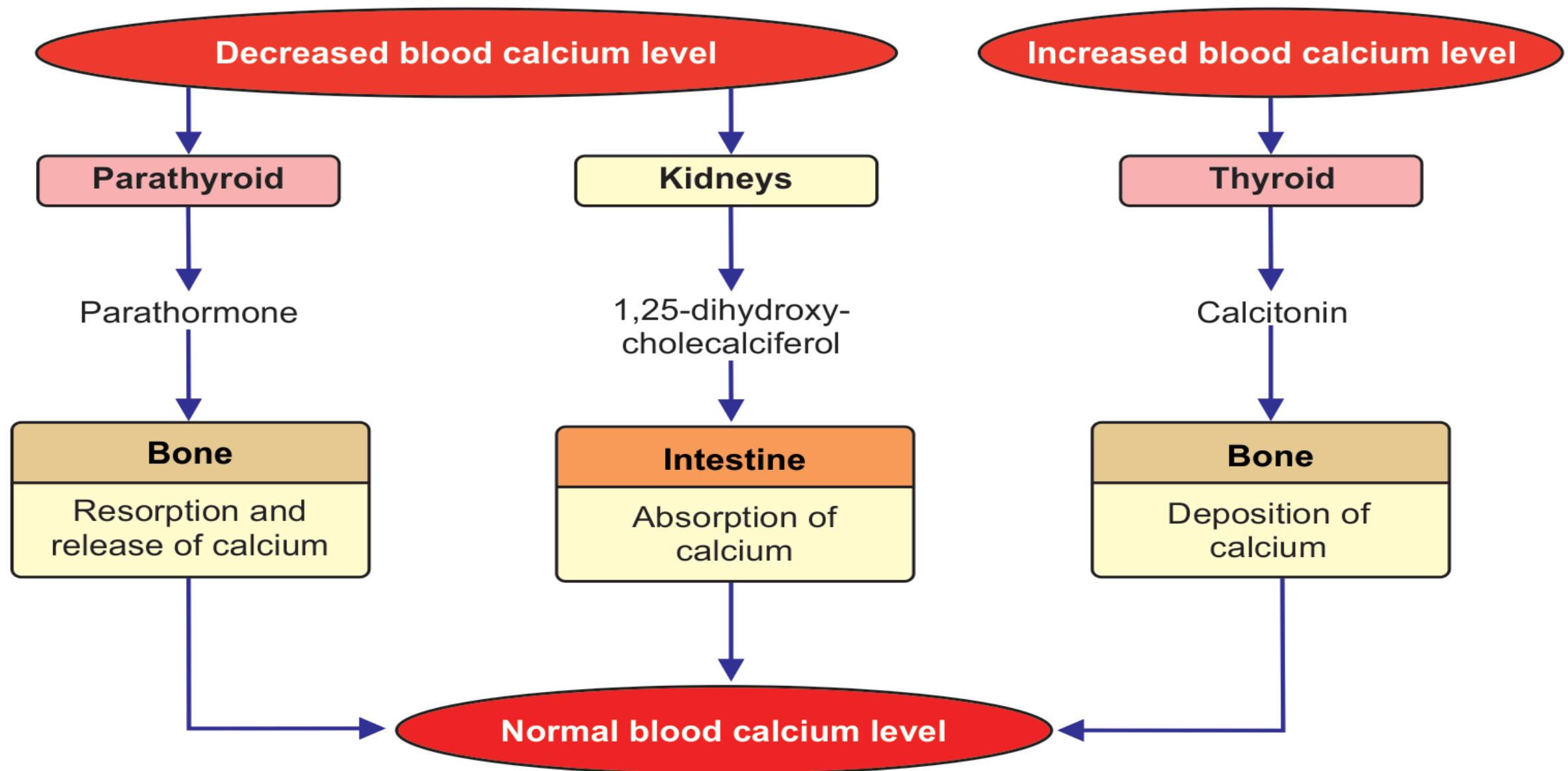
- Calcium is absorbed from the duodenum by **carrier-mediated active transport**
- It is absorbed from the rest of the small intestine by **facilitated diffusion**.
- Vitamin D is essential for the absorption of calcium from the GI tract.

Excretion

- While passing through the kidney, a large quantity of calcium is filtered in the glomerulus.
- From the filtrate, 98 to 99% of calcium is reabsorbed from renal tubules into the blood.
- Only a small quantity is excreted through urine.

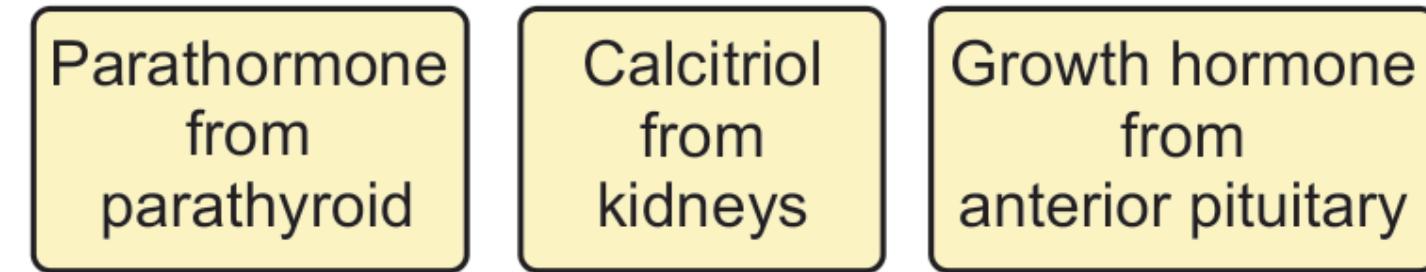
~~•~~ Most of the filtered calcium is reabsorbed in **the ascending limb of the loop of Henle and distal convoluted tubules**

Excretion


- In the distal convoluted tubule parathormone increases the reabsorption of calcium.
- In the collecting duct vitamin D increases reabsorption and calcitonin decreases reabsorption.
- About 1,000 mg of calcium is excreted daily.
- Out of this, 900 mg is excreted through faeces and 100 mg through urine.

Regulation of blood calcium level

- Calcium metabolism is regulated mainly by three hormones:
 - Parathormone.
 - 1,25-dihydroxycholecalciferol (calcitriol).
 - Calcitonin.
- **Parathormone**
 - It is a protein hormone secreted by the parathyroid gland
 - Its main function is to increase the blood calcium level by mobilizing calcium from bone (resorption)


Regulation of blood calcium level

- **1,25-dihydroxycholecalciferol – Calcitriol**
 - It is a steroid hormone synthesized in the kidney.
 - It is the activated form of vitamin D.
 - Its main action is to increase the blood calcium level by increasing the calcium absorption from the small intestine.
- **Calcitonin**
 - It is a protein hormone secreted by parafollicular cells of the thyroid gland.
 - It is a calcium-lowering hormone.
 - It reduces the blood calcium level mainly by decreasing bone resorption.

Schematic diagram showing regulation of blood calcium level

Increased by

Blood calcium level

Growth hormone
from
anterior pituitary

Parathormone
from
parathyroid

Calcitriol
from
kidneys

Calcitonin
from
thyroid gland

Cortisol
from
adrenal cortex

Decreased by

Effect of hormones on blood calcium level

Effects of Other Hormones

- In addition to the above-mentioned three hormones, growth hormone and glucocorticoids also influence the calcium level.
- **Growth hormone:** It increases the blood calcium level by increasing the intestinal calcium absorption.
- **Glucocorticoids:** Glucocorticoids (cortisol) decrease blood calcium by inhibiting intestinal absorption and increasing the renal excretion of calcium.
- **Thyroid hormone:** It increases the blood calcium level

Calcium metabolism disorders

These have been discussed in the last lecture under
disorders of the parathyroid gland!

- Hypocalcemic tetany
- Latent tetany
- Hypercalcemia

Useful links

- <https://www.youtube.com/watch?v=SWv-aY4RH3c>
- <https://www.youtube.com/watch?v=ILXTn5gsNUw>
- <https://www.youtube.com/watch?v=aJ1I8LR-b7c>
- https://www.youtube.com/watch?v=JYQL7JEsF_4